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Abstract—Dermoscopy is a procedure of capturing skin
images, and these images are useful for analyzing the
various forms of skin diseases. Malignant melanoma is
a form of skin cancer that, with its severity, often leads
to death. Earlier melanoma detection prevents death, and
patients can be treated by clinicians to increase the chances
of survival. Quite a few machine learning algorithms were
developed to use its features to detect the melanoma. This
paper proposes a method for computer-aided diagnosis
(CAD) which equips practical algorithms for the iden-
tification and prediction of melanoma and related skin
diseases. Enhancement of the images is done using Contrast
Adjustment, Histogram Equalization technique, Gaussian
smoothing and median filter. MultiResUnet architecture is
employed to segment the affected skin lesion from healthy
skin. The extracted Region of Interest images from the
segmentation step is fed into the proposed classification
techniques based on CNNs. The proposed system is tested
and validated with nearly 2000 images (malignant benign
lesions), and it provides a high classification precision of
87.43%. The proposed CAD system can assist dermatol-
ogists in confirming the diagnosis decision and avoiding
excisional biopsies.

Index Terms—Melanoma, Deep Learning, Dermosocopy,
UNet, Convolutional Neural Networks

I. INTRODUCTION

Skin Cancer is the uncontrolled growth of abnormal
cells in the epidermis, the outermost skin layer, caused
by unrepaired DNA damage that triggers mutations.
These mutations lead to the rapid proliferation of skin
cells and the development of malignant tumours. Skin
cancer is majorly caused by prolonged exposure to
the sun’s ultraviolet rays or the use of UV tanning
machines. There are three major types of skin cancer:
Basal Cell Carcinoma: - cancer that starts in the basal
cells, Squamous Cell Carcinoma - disease caused by the
out-of-control growth of the abnormal squamous cell,
Melanoma -the deadliest form of skin cancer. Further-
more, there are other skin conditions that may or may
not be cancerous but can be mistaken for cancer or
can go undiagnosed. These include Benign Keratosis,
Actinic Keratosis, Melanocytic Nevus, Dermatofibroma
and Vascular Lesion.

Fig. 1. Visual Representation of various skin diseases

Skin cancer is known to be the most common hu-
man malignancy. Every year in the United States, there
are 5.4 million new cases of skin cancer. Statistically,
Melanomas account for approximately 75% of all skin-
cancer-related deaths and are responsible for over 10,000
deaths annually in the United States alone [1]. More
than 13,000 new cases of Melanoma occur annually in
Australia, resulting in more than 1,200 deaths. It causes
more than 20,000 deaths per year in Europe. The good
news is that skin cancer is treatable with high odds of
being completely eliminated if diagnosed early. Early
detection is critical, as the estimated 5-year survival rate
for Melanoma drops from over 99% if detected in its
most initial stages to about 14% if detected in its latest
stages [1].

For the precise and early detection of Melanoma,
highly trained expert clinicians with dermoscopic in-
struments are currently needed, but their number has
not kept up with demand. To diagnose skin cancer,
a physician generally examines the affected area and
based on his experience, diagnoses the condition. If
needed, a biopsy is performed. Hence, diagnosis is based
mainly on the physician’s personal experience. Without
computer-based assistance, the clinical diagnosis accu-
racy for melanoma detection is reported to be between 65
and 80% [2]. Use of dermoscopic images improves this
significantly. Currently, highly trained expert clinicians



with dermoscopic devices are needed for accurate and
early detection of melanoma, but the number of experts
has not kept up with demand. Dermoscopy is a spe-
cialized method of high-resolution imaging of the skin
that reduces skin surface reflectance, allowing clinicians
to visualize deeper underlying structures. Using this
device, specially trained clinicians have demonstrated a
diagnostic accuracy as high as 75 to 84%. However,
recognition performance decreases significantly when
the clinicians are not adequately trained. While in the
United States there are more than 10,000 dermatologists,
in other areas of the world, the supply of expertise is
limited. For example, in Australia, the number of reg-
istered dermatologists in 2004 was approximately 340,
and in New Zealand, there were 16. Restricted access
to expert consultation leads to additional challenges in
providing adequate levels of care to the populations that
are at risk. To address the limited supply of experts,
there has been an effort in the research community to
develop automated image analysis systems to detect a
disease from dermoscopy images. Such technology could
be used as a diagnostic tool by primary care physicians
and staff for regular screening, or by clinicians who are
otherwise not trained to interpret dermoscopy images.

The primary motivation behind the project is to create
an end to end deep learning approach for early detection
and classification of skin cancer which can benefit a
large number of people. In this paper, we propose a
novel methodology called SkiNet, which enhances the
dermoscopic input images using our Image Enhancement
algorithm. For this, we extract the Region of Interest
(RoI) using MultiResUNet and use a two-stage classi-
fication algorithm : The first stage involves detecting
whether the condition in the image is cancerous followed
by the second stage which identifies the type of cancer
if found carcinogenic, or predicts the associated skin
disease.

II. RELATED WORK

Skin cancer is one of the most common cancers
worldwide, however, it can be treated if detected early
on. There has been an extensive amount of research done
in the field of skin cancer detection especially Melanoma
detection which is the deadliest form of skin cancer.

Computer vision for Skin cancer detection can be
traced back to the late 1980s where researchers have
processed images using techniques like border detec-
tion, semi-translucency detection, Telangiectasia detec-
tion and ulcer and crust detection [3]. In this work,
the researchers approach the problem of image analysis
using a cognitive model of features important to the

dermatologist. They work on automatic detection of
several features of basal cell epitheliomas, along with
using image processing methods like frequency anal-
ysis of the Fourier transform of skin images and the
Sun-Wee texture analysis algorithm. Throughout various
research studies, it’s noticed that the two main tasks
which researchers perform for skin cancer detection are
segmentation and classification.

Early works of Skin cancer segmentation can be traced
back to the 1990s. Ercal [4] detects the boundaries of
the skin tumor from colored skin images and uses an
adaptive color metric from RGB planes that contain
information to discriminate the tumour from the back-
ground. This tumour is then segmented from the rest
of the image using a coordinate transformation. This
technique is based on a segmentation algorithm that
uses an adaptive transformation function followed by
thresholding.

In Xu et al. [5] segmentation is done using intensity
thresholding. The method followed in the paper first
reduces a colored image into an intensity image and then
carries out the thresholding. It further refines the process
using image edges, if a lesion boundary exists, double
thresholding is used to focus on it. An elastic curve is
fitted to the initial boundary, and is locally expanded
or shrunk to approximate edges in its vicinity. The use
K-means clustering for image segmentation could be
observed in Azad et al. [6], the segmented image could
then be used for feature extraction.Recent advancements
in deep learning has led to the usage of CNNs for the
process of image segmentation. This could be observed
in Yuan et al. [7], Jafari et al. [8] etc.

One of the early uses of image processing for skin
cancer classification could be observed in Stolz [9]
where they had used scanned and digitized melanocytic
lesions from which features where extracted and statis-
tical algorithms were used for the classification. These
features along with histologic diagnosis are then used
as the input in a statistical classification program which
gives about 92 percent accuracy. In Romero-Lopez [10]
we observe the usage of VGGNet convolutional neu-
ral network architecture for the purpose of classifica-
tion along with the transfer learning paradigm. Deep
learning-based approaches to skin cancer classification
can also be observed in Esteva [11], Kawahara [12]
etc. Elgamal [13] has used a three stage approach with
extraction, dimensionality reduction and classification
for skin cancer detection. Work by Hoshyar et al. [14]
shows the importance of the pre-processing step in skin
cancer detection. Different types of neural net and pre-
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Fig. 2. Workflow of Proposed Methodology

processing steps are also studied by works of Lau and
Al-Jumaily [15] and Samavi et al. [16]. Other novel
deep learning methods like Support Vector Machine
are implemented for detection and classification of skin
cancer by Alquran et al. [17] and Premaladha et al. [18].

Recent works like Codella [19], Alom [20] etc. have
combined the combined the power of both segmentation
and classification. Segmentation first is used as pre-
processing step and then that processed image has been
used for classification. Maglogiannis et al. [21] have
worked on intelligent approaches for the same.

III. PROPOSED METHODOLOGY - SKINET

Our proposed SkiNet methodology automatically en-
hances the input image by performing contrast adjust-
ment, intensity adjustment and also helps in reducing
background noise using the gaussian smoothing and
median filter. RoI is then extracted from the enhanced
image by performing segmentation using MultiResUnet
algorithm. We then perform classification of skin lesions
using standard CNNs.

A. Image Enhancement and Augmentation

Different factors influence the image quality that may
affect a clear understanding of the forms of dermoscopic
images. Some of these factors are low contrast between
the lesions and skin, hairs covering the affected skin area,
specular reflections, and the background noise. Due to
the above factors, there is a compelling need to enhance
the quality of images to enable adequate accuracy in

both segmentation as well as classification. We em-
ployed contrast adjustment and histogram equalization
techniques to remove specular reflections and adjust
the illumination, resulting in a more consistent set of
images. The median filter along with gaussian smoothing
helped in curtailing the background noise and thereby
improving the overall quality of the image. Our proposed
enhancement technique is explained in Algorithm 1.

Algorithm 1: Our Proposed Image Enhancement
Algorithm on Dermoscopic Images

Input : Raw Skin Lesion Images, L(x,y)
. ’x’ : width and ’y’ : height

Initializations: Set σ, φ, ψ, α and β
1 for  = 1,2,..,N do
2 Compute σ empirically
3 1 ← C(x,y;σ) ∗ L(x,y)

. where C is a contrast adjustment technique
4 Compute α and β empirically
5 2 ←I1 * G(x,y;[ α β])

. where G is image intensity adjustment technique
6 Compute φ and ψ empirically
7 3 ←I2 * M(x,y;φ;ψ)

. where M is a Median filter
8 Compute η empirically
9 O ←I3 * λ(, y;η)

. where λ is a histogram equalization operation
Output: Enhanced Skin Lesion Images

The DL models are data-intensive. In the medical do-
main, one of the common problems is the availability of
good amount of data to train the DL models for various
segmentation and classification tasks. Although there is
a good amount of data, there may be an imbalance
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Fig. 3. Visual Representation of our proposed image enhancement
algorithm (A)Shows the input image (B)Shows the Enhanced image

between classes. To fix the class imbalance and also to
mitigate the problems of overfitting when training the DL
models, we implement augmentation strategies that can
effectively augment the dataset by maintaining a balance
between classes. The augmentation strategies employed
by us include random rotations between 20 to 70 degrees
and flips both horizontal and vertical.

B. RoI Extraction

In medical image analysis, each pixel of the image
contains vital information which plays a crucial role in
deciding the treatment. It is essential to pass only the RoI
onto the classification stage as it would help us obtain
precise results from a well-trained model. Moreover, this
would also reduce computation time due to the optimal
utilization of the available computational resources. The
skin lesion is detected in the dermoscopic image with
segmentation and is differentiated from the healthy skin
in the background.

Deep Learning has made a breakthrough in the seg-
mentation of biomedical images in recent years. U-Net
has been the most successful architecture in the field of
medical imaging in this regard. Despite excellent overall
performance in segmenting multimodal medical images,
the work done by Nabil et al. [22] proposed an advanced
segmentation technique known as MultiResUnet which
demonstrated that the classical U-Net architecture ap-
pears to be lacking in certain aspects through extensive
experimentation. Using Keras and Tensorflow backend, a
MultiResUnet was implemented for lesion segmentation.
It is similar to U-Net architecture. In general, the method
is a modeling system that learns from an input image
to an output image a functional mapping. The original

image is the input image, and a segmentation mask is
the output image. The network structure involves a series
of operations of convolution and pooling, followed by
a single fully connected layer, followed by a series of
operations of unpooling and deconvolution. Skip con-
nections are used to connect convolutional data with
deconvolution operations before pooling. It helps the
network to model functional residuals as well as provide
the output layers with higher resolution information
in order to boost network performance compared to
networks without skip connections.

Nabil et al. work noted some inconsistencies between
the features transferred from the network of encoders
and the features propagating through the network of de-
coders. Res paths have been proposed to merge these two
conflicting sets of features, adding some extra processing
to make the two feature maps more homogeneous. In
addition, MultiRes blocks were proposed to increase U-
Net with the ability of multi-resolution analysis. Inspired
by Inception blocks and formulated a compact analogous
structure that is relatively lightweight and requires less
memory. Compared to traditional UNet, MultiResUNet
works effectively by integrating these changes.

C. Classification

It is essential to classify the RoI into one of corre-
sponding skin disease to provide the appropriate treat-
ment. Considering that the smaller data sets are an
inherent problem in the field of biomedical imaging, a ro-
bust classification technique is needed that can take into
account the overfitting problem and can work effectively
in such scenarios. CNNs are a deep learning technique
that implicitly perform feature extraction on image data
with deeper networks generally learning more sophisti-
cated representations of the image data. Training CNNs
to perform this kind of automated feature extraction
typically comes with the onus of requiring large volumes
of labelled training data. When such training corpora are
available, CNNs are capable of achieving state-of-the-art
performance in general object recognition, as evidenced
by their dominance of the ImageNET benchmark. A
variety of CNN architectures have been introduced and
continue to be improved. Individual architectures have
different capabilities in their ability to characterise or
represent image data, which is often linked to the depth
of the CNN. CNNs are the state-of-the-art deep learning
method for image classification as demonstrated by
their dominance of the ImageNet benchmark. A variety
of different architectures have been introduced for the
classification of the 1000 categories in the ImageNet
dataset. CNNs generally require large training datasets
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Fig. 4. Architecture of MultiResUnet

Fig. 5. Visual Representation of results obtained using our RoI
extraction step (A)Denotes the input image (B)Denotes the ground
truth corresponding to input image (C) Denotes the predicted RoI by
MultiResUnet

and as such their direct application to medical imaging
is difficult due to the time and labour cost involved in
creating expertly labelled training datasets. Anthimopou-
los et al. showed that CNN architectures have higher
accuracy than other methods when significant effort has
been expended to acquire labels for the training data.
However, when only small training datasets are available,
which is the norm, CNN-based methods may overfit and
struggle to learn the best image features. We perform
classification using ResNet 50, DenseNet and Inception
architectures.

IV. EXPERIMENTS AND RESULTS

A. Dataset

For experimentation we have mainly used an ISIC
2018 dataset. For Lesion Boundary Segmentation we
used a dataset that consists of about 2594 Images for

training, 100 images for validation and 1000 images
for testing. For Lesion Diagnosis i.e. Classification we
used a dataset that consists of about 10015 Images for
training, 193 images for validation and 1512 images for
testing.

B. Performance measure

We have employed widely used metrics like - Dice co-
efficient(DI), Jaccard index (JI) and Pixel Accuracy(AC)
are used to quantify the performance of image segmen-
tation. Dice coefficient and Jaccard Index essentially
measure the similarity between the ground truth and the
predicted segmented image in terms of the extent of
overlap between the two images while pixel accuracy
reports the percent of pixels in the image which were
correctly predicted. The Jaccard index is given by:

dJ(M,C) = 1 − J(M,C) = 1 −
|M ∩ C|

|M| + |C| − |M ∩ C|
(1)

where M represents the ground truth of segmentation,
which is normally a manually-identified tumor region,
and C represent a mask.

AC = (TP + TN)/(TP + FP + TN + FN)
SE = TP/(TP + FN)
SP = TN/(TN + FP)
D = 2 · TP/(2 · TP + FN + FP)
JA = TP/(TP + FN + FP)

(2)

To evaluate the effectiveness of our proposed classifi-
cation solution, a confusion matrix is employed which is
a widely used evaluation measure in classification tasks.
Based on the confusion matrix, the values of accuracy,
precision, sensitivity(SE), specificity(SP) and F1-score
are used for performance evaluation at the patient level.
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C. Results

We have inspected the validity of our proposed image
enhancement technique, evaluated state of the art image
segmentation techniques and compared our proposed
SkiNet methodology to already existing solutions as well
as with widely used CNN based models.

1) Segmentation: Evaluating the results obtained
from the segmentation techniques shown in table I, our
proposed image enhancement methodology has provided
significant improvements in the segmentation task on
both the architectures. As observed in Table I, Mul-
tiResUNet with enhancement does slightly better than
the usual MultiResUNet and with a Dice Coefficient of
0.8963, Jaccard Index of 0.592 and Pixel accuracy of
0.9357, it performed significantly better than U-Net and
U-Net along with enchancement.

TABLE I
COMPARITIVE STUDY OF VARIOUS SEGMENTATION

MODELS ON THE ISIC DATASET

Model Dice Coefficient Jaccuard Index Pixel Accuracy
U-Net 0.8496 0.549 0.8702
U-Net+Enhancement 0.8632 0.566 0.8863
MultiResUNet 0.8841 0.581 0.9233
MultiResUNet+Enhancement 0.8963 0.592 0.9357

TABLE II
COMPARITIVE STUDY OF VARIOUS CLASSIFICATION

MODELS ON THE ISIC DATASET

Model Precsion Specifity Sensitivity F1 Score
SqueezeNet 76.2% 84.63% 65.21% 0.80
ResNet 81.8% 89.53% 71.87% 0.86
VGGNet 79.3 87.63% 68.44% 0.83
Inception V3 83.4% 90.89% 72.41% 0.87
DenseNet 86.67 92.81% 74.73% 0.91

TABLE III
COMPARITIVE STUDY OF VARIOUS CLASSIFICATION

MODELS AFTER SEGMENTATION ON THE ISIC
DATASET

Model Precsion Specifity Sensitivity F1 Score
SqueezeNet 77.6% 85.42% 66.21% 0.81
ResNet 82.9% 90.49% 69.98% 0.86
VGGNet 78.67 86.54% 68.44% 0.84
Inception V3 84.1% 92.36% 73.86% 0.89
DenseNet 87.43 94.21% 75.69% 0.92

2) Classification: In order to evaluate the perfor-
mance of the Skinet in the classifcation task, we use
the performance metrics discussed in Section IV part B.
From Table II we observe that the DenseNet architecture
does better compared to other state of the art networks
thus we employ it our SkiNet pipeline and Fig. 4 show

Fig. 6. Validation Results of SkiNet

the confusion matrices. Table III specify the perfor-
mance of our methodology with MultiResUNet based
segmentation. These results highlight the fact the existing
models perform poorly as compared to our proposed
methodology. Classification preceded by segmentation
yielded a better performance validating the inclusion
of segmentation into our pipeline. We can observe that
our pipeline MultiResUNet segmentation + DenseNet
classification outperforms all the existing results. We
have achieved an overall precision of 87.43%, an average
sensitivity of 96.82%, an average specificity of 75.69%,
an average precision of 94.21% and an average F1-Score
of 0.92. The confusion matrix can be observed in Fig.7
.The superiority of the SkiNet model can be attributed
to the pipelined architecture of our model where we take
the best of both worlds i.e segmentation and classifcation
models thus making it even better when compared to
other state of the art models.

Fig. 7. Confusion Matrix of SkiNet
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V. CONCLUSION

SkiNet is a novel pipelined architecture that segments
the tumor as a form of preprocessing and then classifies
the tumor accordingly. This model might be skewed due
to the limited amount of data we have in our current
ISIC dataset. We could thus improve the performance
of this model with the availability of more data which
could be generated with the use of General Adversarial
Networks(GANs).
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